Role of Histamine, Metabolism, Neuro-excitatory and Neurotransmitters for Addiction

Histamine refers to transmitter that is endogenous in nature and one that is involved in gastric secretions, allergic manifestations and vigilance regulation. It is found in tissues of all animals especially mamma also with high concentrations in the skin, liver and lungs. In the tissues, the transmitter histamine occurs in mast cells which are simply a group of cells whose cytoplasm has high concentrations of basophilic granulations.

In the mast cells histamine exists bonded to acidic compounds like heparin. In most cells with histamine, its production is slow and when it sis depleted t may take several weeks to go back to normal levels. The brain also contains histamine in certain level. Histamine occurs in the brain region in the hypothalamus based o circadian rhythm which occurs in the brain. Its concentration in the plasma does not exceed 1 microgram per liter but this concentration is high in patients suffering from asthma.

neurotransmitters

In the blood the level of histamine ranges from 10 to 100 micrograms in a liter and is primarily concentrated in the basophils. This concentration as studies show rises especially in patients suffering from medical conditions like gastrodudenal ulcers and chronic myelogenous leukemia. Histamine depreciates some times in the body. This means that more has to be produced to replace the one that is lost. This replacement is often slow and can take several weeks. However, histamine renewal in the nervous system and the gastric cells is at faster rate because it is released continuously.

Histamine and Metabolism

Naturally the distribution of histamine in the body is not usually uniform. It however, occurs in in higher concentrations in the mucosa of the gastric system. Its metabolism is dependent on enzymes such as diamine oxidase, histamine N-methyltransferase and histidine decarboxylase. These enzymes seem to be dominant in the stomach region. Studies have been carried out to determine exactly the concentration of histamine in the gastric system. For years this has been a subject of controversial debate and it was only recently that a solution was found. Studies show that the inactivation process of histamine by histamine methyltrasferase takes place in the gastric mucosa that has a significant activity of enzymes.

However it is worthwhile to note that the intestines, liver and spleen have much higher activities which points towards little specification of catabolism of histamine in the gastric mucosa. There have also been debates concerning the activity of diamine oxidase which for years was thought not to exist in the corpus mucosa. Recent studies however, show that moderate enzyme activities of this enzyme is present in some species among them man. In this case then, the metabolism of histamine n the gastric mucosa does not mean its existence in mammalian tissues. Activities of these enzymes could also act as an indication that it has significant physiological functions in the body.

The formation and inactivation of histamine has been shown to be regulated through enzyme activities by during the process of secreting acid. Histamine N-methyltrasferase and histidine decarboxylase are enhanced by gastrin activities and not necessarily influenced by vagal stimulation.

Neuro excitatory and Neurotransmitters for Addiction

Studies show that rugs especially alcohol affect to a great extent the brain as well as some physical processes of the body. There are several reasons that make a person an alcohol addict. These reasons may range from depression, stress, impulse of just mere pleasure. Once a person becomes alcohol dependent, a pattern has already been established and this affects the neural system of the person.

Histamine

The Neurotransmitter Process

In order to fully understand the neurological effects of alcohol addiction in the brain, there is need to understand how the brain transmitters work. The brain communicates through neurons that send messages form ne cells of the brain to an0ther. Transmission of nerve signals takes place from one brain region to another. Once a neuron has been activated, an electrical signal is produced which travels all through the membrane that surrounds the body and axon of the neuron. The signal reaches the end of the neuron and this triggers neurotransmitters to be released from the brain cells. The neurotransmitters then travel from one neuron to another. On reaching the other neuron, the molecules in the transmitter bind with receptors in the neuron and this triggers new electric signal to be produced. Production of new signals depends on the type of neurotransmitter that is involved in the process.

Most neurotransmitters exhibit inhibitory and excitatory effects. This is dependent on the region of the brain and the receptors present in that region. Neurotransmitters with excitatory effects include among others glutamate, dopamine and serotonin while those with inhibitory effects include gamma-aminobutyric acid most commonly referred to as GABA. When one takes alcohol it tends to reinforce the transmitter system. This affects many neural transmitter processes which trigger some long term effects like withdrawal, tolerance, dependence, sensitization and finally addiction.

This information can be found for free at www.awaremednetwork.com. Here you will also find other health and awareness tips.

Role of Histamine, Metabolism, Neuro-excitatory and Neurotransmitters for Addiction

 

Facebooktwitterpinterestlinkedin